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Propagation of Cladded Inhomogeneous
Dielectric Waveguides

MASAHIRO HASHIMOTO, MEMBER, IEEE

Abstract—An approximate theory on the propagation of modes in an
arbitrarily inhomogeneous optical waveguide embedded in a homo-
geneous medium is presented. Simple formulas are given, whereby the
propagation constants can be determined assuming that the analytic
solution is known in the absence of cladding. The results obtained apply-
ing the theory to a truncated parabolic-index profile are shown to be
in good agreement with those obtained by the rigorous amalysis. The
theory is also applied to the propagation of TE and TM waves in trun-
cated near-parabolic-index media.

INTRODUCTION

N important aspect of guided waves propagating in
inhomogeneous (graded) index dielectric waveguides
involves the investigation of the propagation characteristics
subjected to signal distortion. Recently, considerable effort
has been expended to compute the propagation constants
of modes by means of high-accuracy straightforward
computation [1], because it is very difficult to obtain an
analytic solution except for a certain index profile. The
analytic approach becomes more difficult for the cladded
inhomogeneous dielectric waveguide in which the graded-
index medium is suspended in a homogeneous medium.
In a recent work [2], the purely mathematical techniques,
"based on the integral representation of a solution of
Hermite’s differential equation, have successfully been
applied to a cladded parabolic-index waveguide, and the
mode functions have been obtained in analytic form.
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The aim of this paper is to develop an approximate
theory of propagating modes in a general class of cladded
inhomogeneous dielectric waveguides. This theory is verified
by comparing the results with those obtained exactly in a
case of parabolic-index profile.

We here consider the two-dimensional waveguide in
which the refractive index varies in the transverse x direction
as (see Fig. 1)

Hg \/1 - X(x)5
o V1 — x(x0), ey

where x(x) is an even and a smooth function satisfying
x(0) = O (see Fig. 1), and n, is the refractive index at the
center axis z (x = 0). The lower order modes are allowed
to propagate along the z axis in the guiding medium |x| < x,,
and the undesirable higher order modes are radiated
through the homogeneous outer medium |x| > x,. The
present approximate theory is developed for the TE wave
propagation along such a waveguide. However, it is shown
that the theory can be extended to the problem of the TM
wave propagation. An example of determining the propaga-
tion constants of TM waves in truncated near-parabolic-
index media is given in the last subsection.

n(x) = for |x| < x,

for |x]| > x,

MODES IN AN IDEAL WAVEGUIDE

The starting point is the knowledge of modes (electric-
field functions), including propagation constants, in the
ideal waveguide, which is defined as an uncladded wave-
guide consisting only of the guiding material (the index
distribution is indicated by the dotted curve in Fig. 1).
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Fig. 1, Refractive-index distribution of a cladded inhomogeneous
dielectric waveguide (solid curve). The dotted curve indicates the
refractive-index distribution of an ideal waveguide (an uncladded
inhomogeneous dielectric waveguide).

We now write the mode function and the propagation
constant in the ideal waveguide as

B, = kJ1 — b,

D, (x)e” 4 (n=012-) (2

where k is the wavenumber at the center axis z. The trans-
verse mode function ®,(x) obeys the one-dimensional wave
equation

(I)n”(x) + kz[bn - X(x)]q)n(x) =0 (3)
where primes denote differentiation with respect to x.

A. Acceptable Solution

To obtain the guided wave along the center axis z, the
transverse mode function ®,(x) must be assumed to be a
damped solution that decreases exponentially as x tends
to infinity. When x is restricted to the oscillatory region in
which the field behaves oscillatorily, the solution can be
represented in the WKB asymptotic form [3]

cos (J: k\/m dt — %)
C)

where C, is a constant and Z, is the wave impedance
(= oplk) at x = 0.

V2z,

0,(x) = C,
Vb, — 3(x)

B. Unacceptable Solution
There exists the other solution whose asymptotic rep-

resentation is
V2Z sin (f kn/b, — x(t) dt — 7)

Y (x) ~ C, e
* f/b—xx)

3

The ¥, (x) is not an acceptable solution in the ideal wave-
guide because it grows up exponentially as x tends to
infinity. Equation (4) expresses a standing wave, as shown
in Fig. 2, and is decomposed into the incident wave ®,(x) —
JY¥.(x) transmitting only the stored energy [4] with the
Poynting power C,? toward the x direction and the reflected
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Fig. 2. Interpretation of the field resonance in the ideal waveguide.

wave ®,(x) + j¥,(x) transmitting the same energy toward
the opposite direction. These two waves give rise to a
resonance in the transverse plane. When we regard this
resonant system as a network, and choose a driving point
of the network at x = 0, the odd and even numbers of n
correspond to a resonance and antiresonance, respectively.
According to the network theory [5], it is concluded that the
field distribution is symmetric (antisymmetric) when an
antiresonance (a resonance) occurs.

D, (%) = even} for n = 02,4,

Y.(x) = odd
P, (x) = odd _ .
W (x) = even} , forn = 1,3,5,~--. (6)

This is true even if the outer layer exists. Therefore (6)
becomes important in the next section.

A set of @,(x) and ¥ (x) will be needed when we calculate
the effect of the cladding. The function ¥,(x) can uniquely
be determined as follows, recognizing the function ®,(x).

1) Give @,(x).

2) Calculate C, with ®,(x). This is done by expanding (4)
into a power series of x

\/220 cos (nz_n) + C,kv2Z, /b, sin (Z;E) X

m o C
( ) Jtn

Thus, at x = 0,

—
J/_b"_ 2O for n = 02,4,
220 405 (@)
2
C, ~
\/__1 = 2O forn =135 (8)
2Z, kD, sin (yzir)

3) Seek the solution W,(x) that satisfies the power con-
servation law (Poynting theorem)

D (X)¥,(x) — B,/ (X)W, (x)

and the even—odd condition (6).

= 2kC,2Z, )
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MODES IN A PRACTICAL WAVEGUIDE

We now consider the inhomogeneous wave propagation
in the cladded inhomogeneous waveguide (Fig. 1). The
propagation constants for this waveguide will change the
form as

B, = kJ1 — b,

v=mn+ Ay, n=012,-"")

- (10)
where the symbol B, or b, emphasizes the analytic con-
tinuation which is achieved by replacing » by v in the

functional form of B, or b,. The analytically continued
functions ®,(x) and ¥ ,(x) are, then,

D, (x) = Cv%i?—ix—) cos (f k\/b — (1) dt — 2)
W) cw—i?_?%sm ( f /B, ) i - %)

(11)

The transverse mode function can be written, in the guiding
region, as a linear combination of ®,(x) and ¥, (x)

®,(x) cos 0, — ¥ (x) sin 6,

VT o ([ e - 4 0
vmcos<f0 Vb, — x(t) dt 2+V).
(12)

This solution will still obey the “even~odd rule” for n, as
mentioned before; (12) is an even (or an odd) function of x
when 7 is even (or odd), and we see at once that —vx/2 +
0, = —n=n/2, or

0, = = Av,. (13)

SRR ]

The continuous electric-field function of nth‘mode is now
written as ‘
@ (x) cos (12‘: Av,,) — W, (x) sin (g Av,,) ,

field function = for |x| < x,

Av €xp (_kV X(xc) - bv |x - xcl)’
for |x| > x, (14)

where

A, = ®,(x,) cos (g Av,,) — W,(x,) sin (g Av,,) .
The magnetic-field component H, proportional to the
derivative of (14) with respect to x, must also be con-
tinuous at x = x,. Thus
7 . [(m
Ko, cos (5 Av,,) — Ky, sin (5 Av,,) =0 (15)
where Ky, and Ky, denote surface currents flowing toward

the direction perpendicular to the x axis, at x = Xx,;
when the internal electric field is forced to be ®,(x)e /%=
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(or W ,(x)e™/#+%), the surface current Ko, (or Ky ) is induced
in the presence of magnetic-field discontinuity. Equation
(15) means that the total surface current vanishes at x = x,.
Thus we have

Av,

i
O
alw
S —

o+

1S
=

B/(x) + k/z(x) — b, Qv(xﬁ] . (16

2|
1t AN .
(71?) . ¥, (x) + k\/X(xc) — b, ¥\(x,)

Noting that Ay,
approximate

(g) can-! [(I) () + k\/x(xc) b, O,(x, )] (17
Y4

W, (x) + kvx(x) — b, W,(x.)

is usually small compared to n, we

Ay

~

At this stage, the present approximate method for
determining the propagation constants will be summarized.

1) Give the ideal waveguide solutions ®,(x) and f, in
analytic form.

2) Obtain the associated solution ¥,(x) from (6), (8), and
).

3) Substitute the specified function ®,(x) and the as-
sociated function ¥,(x) just obtained into the right-hand
side of (17), and calculate Av,.

4) In B,, replace n by v = n + Av,, and compute j,.

The four steps will be explained in detail when the
method is applied to some cases of index profile.

EXAMPLES
A. Parabolic-Index Profile (TE Wave Propagation)

x(x) = x0(x) = (g9%)°

where g is the medium constant.

The validity of the present theory is firmly ascertained
when the theory is applied to this case and when the’
results are compared to those obtained with a slight
modification of the rigorous analysis [2].

Step 1: In this case, ®,(x) and b, are well known [6].

D,(x) = Opo(x) = H,(V2 x/S)e 2%, 5, = 1\/kg

where H,(x) is the Hermite polynomial of nth degree,
defined as

Hy(x) = (=1ye”d"[dx")(e™>"?).

Note that (19) may often be denoted by H,,(x).

Step 2: We first calculate C, with (8) using the formulas
Hy(0) = (= 1)"2m — DI, H,y 1 (0) = (= 1)"@2m + DI,
where Cm — D! =C2m - 1)2m —3) - land(—H!! = 1.

— 1 7
- DIY/2 +1\/——\/—,
(n = DIN/2n 2Z,\V k

19

C, = forn = 024,---
nl! \/1 \ﬁ
M L 19 forn =135 (20)
V2n +1VZoVk
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Second, to obtain the associated solution ¥,(x), the Hermite
function /,(x) [7] of the second kind defined below is
introduced

h(x) = (—1)e*/?(d"[dx") (e-ﬂ/2 f e’? dt) . 2D
0

Equation (21) is another solution of Hermite’s differential
equation, which is chosen to be an odd or an even function
of x according to whether » is even or odd, and may be
obtained from the theory of parabolic cylinder functions
[8], [9]. The A,(x) satisfies the same recurrence formulas
with those for H,(x).! In addition, A,(x) is associated with
H,(x) by

H,(xX)h,(x) — H,/(x)h(x) = n! 2, 22)
It follows from (22) that the associated solution W¥,(x)
satisfying (6) and (9) is given by

W (x) = Wyo(x) = 20 -Zg—"c,.zhn(\/i x[Se)e™ 507 (23)

n!

Step 3: The functions ®,(x) and W¥,(x) are substituted
into (17).

Av, ~ (%) tan™!
. [ H/(N2E) + (&2 = 2n— 1 = E)H,(2 56)]

Ny = e —
h(N2E) + (WE2 = 2n — 1 — EDR(W2 &)
(24)

where &, = x./S, and

n! _1
= |2

ZoN 2k C2 @5

The values of —Av, versus x./S, are plotted in Fig. 3.

Then, to avoid numerical errors, h,,(\/ 2 &) is computed using
the new function N,(£) defined in footnote 2.

Step 4: Calculation of the propagation constant is
straightforward.

B, = kv/1 = b, = kv/1 — (g/b)2v + 1)
= kvl — (g/b)n + 1 + 2Av).

(26)

(%) — xh/(x) + nhyfx) = 0
B (x) = nbyy(x), (= 1)

Fpp1(x) = xhfx) + nhy_y(x) =0, (=1

— * t2/2
ho(x) = foe 2 gr
hi(x) = x fx ez gy — gx¥i2,

(]
TN = (V2 Ot te PR, (VD &)/n!
NA(& = QEUIN,-1(&) — N, ()], (n=1)
N_i(O=1
. m+DE+2) m+Dn+2)n+3dn+4
Nofe) = 2674 =y
0
R (=1
=2135.7. @ T &
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Fig. 3. A plot of — Ay, versus x,/S, for a parabolic-index profile.

The rigorous analysis [2] yields the same results with (24)
and (26), except that in [2], (25) is given by N 7/2. There-
fore,® the error in the present approximate analysis is about
11 percent when » = 0 and becomes less than 1 percent
when # is larger than 2.

When k, = 10* mm™!, ny = 1.53, g = 3.23 mm™’,
and x, = 12.6 um (x, = 2.85,; S, = 4.5 um), the four
modes will be able to propagate in the waveguide. Then

-0.9 x 1073
—-0.8 x 1071,

Avy ~ —0.4 x 107*
0.9 x 1072

Av, ~

Av, o Av; ~

The values of the propagation constants increase due to the
effect of the cladding. Such increments are, respectively,
13 x107* n=0), 29 x 107* (n=1), 29 x 1072
(n=2),and 2.6 x 107 (n = 3)inmm™*'.

B. Near-Parabolic-Index Profile (TE Wave Propagation)
A = 1) = (gx)? + a(gx)*

where a,g are constants.

Let yo(x) and y,(x) be parabolic and near-parabolic
functions, respectively. For simplicity, the difference
between x,(x) and x,(x) is assumed to be biquadratic.

Step 1. When g/k is small compared with unity, @,(x)
and b, are approximately expressed by [10]

@, (x) = ,(x) = [dy(x)/dx]~ 1/
CH[V2 y(x)[SoJe 628

b, = b,y ~ (g/k)Q2n + 1) + (g/k)a3/H2n* + 2n + 1)
— (g/ky*«*[(17/6H)(2n + 1)°

+ (67/64)(2n + 1)] 27)

., are, respectively, 1.4142, 1.2247, 1.2649,

310 Mys M2y M3y * 14
., which tend to V7/2 = 1.2533 rapidly as

1.2472, 1.2571, 1.2508, - -
n increases.
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where the subscript 1 in ®,,(x) and b,, indicates that the
index distribution is near parabolic [refer to the subscript 0
in (18) indicating the parabolic state], and y(x) is a function
of x approximately proportional to x. The implicit ex-
pression for p(x) is approximately given by

(X)) e X
Voo = 703 dy = f o = 1) dx (28)
0

0

and the second-order solution of (28) is [10]

y(x) = x + (g/k)uSo[(3/16)(2n + 1)(x/So) + (1/8)(x/S0)*].
29

Step 2: To obtain C, ®,,0) = H,,(O)/\/ y'(0) and
D,/ (0) = N 2y'(0) H,'(0)/S, are substituted into (8). We
see that ‘i/b—,,1 is equal to Y b_-,,o ™ ¥'(0) within an accuracy
of first order of g/k. Therefore, we obtain the same result
with (20).

The ¥,(x) can be obtained in a similar manner with (23);
it is readily seen that

P, (x) = Pou(x) = (Un,)[dy(x)/dx] =12
I [N2 p(9ISoJe I (30)
where #, is the same as in (25).
Step 3: Substitute (27) and (30) into (17). Then we neglect
the second derivative y"(x), because y(x) is approximately
proportional to x. This is valid in the range g/k « 1. The

detailed derivation for Av, is given in the Appendix. The
result is

Av, ~ (g) tan™?
.

. [q)nol(yc) + k\/XO(yc) _ bnO chO(yc)] (31)
‘Pnol(yc) + k\/XO(yc) - bnO \PnO(yc)
where
Ye 2 X, + (glk)aSo[(3/16)2n + D(x./So) + (1/8)(x./S0)’].

(32)

It is worth noting that (31) is equivalent to the formula
(24) obtained for the parabolic-index profile only if x, is
replaced by y,.. The Av, can be calculated using (32) and (24).

Step 4: The propagation constant is computed as follows:

By = k1 — b,

b, = (g/)@v + D + (g/k)«(3/H2v* + 2v + 1)
— (glk)**[(17/68)(2v + 1)* + (67/64)(2v + 1)]
v=mn+ Av, (33)

To see the effect of the fourth aberration term in propaga-
tion characteristics, we use the same parameters with those
in the previous subsection. For « = 100 and n» = 3, y, is
13.2 um (2.94S,). Thus, Av; ~ —0.36 x 107! and the
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increment of the propagation constant due to the effect
of the cladding ~ 1.1 x 107" mm~!.

C. Near-Parabolic-Index Profile (TM Wave Propagation)
X)) = x:(x) = (g2)* + a(gx)*

where «,g are constants.

This subsection includes a case of parabolic-index
profile.

Step 1: For TM waves, the ideal waveguide solutions are
given in [10]. The propagation constant is

B, = kN1 — b, — (glk)>. (34

The transverse mode-function (magnetic field) and b, are
given by

g- =gVl + (6x + 4)(g/k)?
SolN/1 + (6 + 4)(g/ky?

I

Se — S (35)

in (27).

Step 2: The derivation of ¥ ,(x) developed here does not
depend on whether the field is of TE type or TM type.
Therefore, the result is the same with (30), if the replace-
ment (35) is taken into account.

Step 3: Ky, and Ky, in (15) must be replaced by surface
magnetic currents. However, the surface electric and mag-
netic currents are similar in form; the difference is neglig-
ible if g/k is small. The formula (17) is also applicable to
this case when the first-order effect of the cladding is to
be evaluated.

Step 4: The propagation constant can be computed as
follows:

B, = kN1 = b, — (g[k)?
b, @Glk2v + 1) + (g/k)Zcx(3/4)(2v2 +2v+ 1)

— (g/k)3oc2[(17/64)(2v + 1)3 + (67/64)2v + 1]
(36)

Note that Av, has been obtained in Step 3 replacing &, in
(24) by y./S, where

Ye = %, + (§/K)aSo[(3/16)2n + 1)(xc/So) + (1/8)(xc/So)*].
37

v=mn-+ Av,

The modification previously described has completed
the application of the present theory to the TM wave
propagation. A more accurate analysis may be developed
by applying the second-order theory of the TM wave
propagation [10] to this case.

CONCLUSION

An approximate theory has been developed for the
analysis of the wave propagation in cladded inhomogeneous
dielectric waveguides. It has been shown that the propaga-
tion constants can be obtained from the ideal waveguide
solutions, which are the analytic solutions in the absence
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of cladding. Some applications have been presented. For
a parabolic-index profile, the results of the rigorous analysis
have been shown by which the present theory has been
verified.

APPENDIX

Derivation of (31) is as follows:
@,/ (x) + kN te(x) — by Dpy(x)

= [dydx]"*{®,0'(3) — [ (612" 2(x)1@uo(30)
+ (@ld) T 11 (6D = bay Do)}
[dy/dx] {@,0'(7.) + kN 20(30) = o Puo(7)
— [¥(x)2 *(x)]Puo(7)}
[dy/dx] 2 @,0'(e) + kN ¥o(3) — buo @uo(3}-

Similarly, we obtain
W, (x) + ki (x) = By Pui(x)

= [dyjdx] V2 {(¥,0' (7)) + kN 2003 = o Fao(¥D)-
Substituting these results into (17), we obtain (31).
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Fringing-Field Effects in Edge-Guided
Wave Devices

PIETRO DE SANTIS, MEMBER, IEEE

Abstract—An equivalent model is presented for evaluating the fringing-
field effects in edge-guided waves (EGW) propagating along ferrite
microstrip circuits. It is based on the approximate model developed by
Getsinger for nonferromagnetic microstrip circuits. Fringing-field
effects are characterized by a fringing-field parameter b/b’ whose
numerical value is determined by experiment. Measurements are made
on EGW resonators of various shapes for different values of the applied
magnetic bias.

Finally, the fringing-field parameter is used to evaluate the ratio
between the reactive power stored in the fringing fields and the RF
power in the ferrite under the strip conductor in a disk resonator.

I. INTRODUCTION

RINGING-FIELD effects in ferrite microstrips have
been studied by a number of authors [1]-[3]. Similar
to what has been done for microstrips on a nonmagnetic
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substrate, they are accounted for by introducing a “‘mag-
netic” filling factor, which reduces the numerical value of
the magnetic permeability of the substrate. Therefore, in
ferrite microstrip lines both the dielectric permittivity and
the magngtic permeability of the substrate’s material have
“effective” values. In general they are given in the form

=1+ Qe(sr - 1)

ol

where ¢, and g,, are the electric and magnetic filling factors,
¢, and u, are the relative dielectric permittivity and magnetic
permeability of the substrate. The two quantities ¢, and g,
depend upon the geometry of the microstrip circuit and
are in general different from each other [4].

The expressions (1) and (2) are valid under the hypothesis
that the substrate is characterized by scalar constitutive

(1)
2

Eerr

Hegr =



