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Propagation of Cladded Inhomogeneous
Dielectric Waveguides

MASAHIRO HASHIMOTO, MEMBER, IEEE

AbsfnJct—An approximate theory on the propagation of modes in an

arbitrarily inhomogeneous optical waveguide embedded in a homo-
geneous mdium is presented. Simple formulas are given, whereby the
propagation coustauts can be determined assuming that the analytic
solution is known in the absence of cladding. The results obtained apply-
ing the theory to a truncated parabolic-index profile are shown to be
in good agreement with those obtained by the rigorous analysis. Tbe

theory is also applied to the propagation of TE and TM waves in trua-
cated near-parabolic-index media.

INTRODUCTION

AN important aspect of guided waves propagating in

inhomogeneous (graded) index dielectric waveguides

involves the investigation of the propagation characteristics

subjected to signal distortion. Recently, considerable effort

has been expended to compute the propagation constants

of modes by means of high-accuracy straightforward

computation [1], because it is very difficult to obtain an

analytic solution except for a certain index profile. The
analytic approach becomes more difficult for the cladded

inhomogeneous dielectric waveguide in which the graded-

index medium is suspended in a homogeneous medium.

In a recent work [2], the purely mathematical techniques,

based on the integral representation of a solution of

Hermite’s differential equation, have successfully been

applied to a cladded parabolic-index waveguide, and the

mode functions have been obtained in analytic form.
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The aim of this paper is to develop an approximate

theory of propagating modes in a general class of cladded

inhomogeneous dielectric waveguides. This theory is verified

by comparing the results with those obtained exactly in a

case of parabolic-index profile.

We here consider the two-dimensional waveguide in

which the refractive index varies in the transverse x direction

as (see Fig. 1)

[

no ~1 - x(x), for 1x1 <xc
n(x) =

n. il - x(x.), for [xl > xc (1)

where X(X) is an even and a smooth function satisfying

x(O) = O (see Fig. 1), and no is the refractive index at the

center axis z (x = O). The lower order modes are allowed

to propagate along the z axis in the guiding medium 1x1 c XC,

and the undesirable higher order modes are radiated

through the homogeneous outer medium [xl > XC. The
present approximate theory is developed for the TE wave

propagation along such a waveguide. However, it is shown

that the theory can be extended to the problem of the TM

wave propagation. An example of determining the propaga-

tion constants of TM waves in truncated near-parabolic-

index media is given in the last subsection.

MODES IN AN IDEAL WAVEGUIDE

The starting point is the knowledge of modes (electric-

field functions), including propagation constants, in the

ideal waveguide, which is defined as an uncladded wave-

guide consisting only of the guiding material (the index

distribution is indicated by the dotted curve in Fig. 1).
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Fig. 1. Refractive-index distribution of a cladded inhomogeneous
dielectric waveguide (solid curve). The dotted curve indicates the
refractive-index distribution of an ideat waveguide (an uncladded
inhomogeneous dielectric waveguide).

We now write the mode function and the propagation

constant in the ideal waveguide as

@n(x) e- ib’.z fin = kdl - b., (n = 0,1,2,...) (2)

where k is the wavenumber at the center axis z. The trans-

verse mode function On(x) obeys the one-dimensional wave

equation

@:(x) + k2[bu – z(x)]~~(x) = O (3)

where primes denote differentiation with respect to x.

A. Acceptable Solution

To obtain the guided wave along the center axis z, the

transverse mode function @n(x) must be assumed to be a

damped solution that decreases exponentially as x tends

to infinity. When x is restricted to the oscillatory region in

which the field behaves oscillatorily, the solution can be

represented in the WKB asymptotic form [3]

(4)

where C. is a constant and ZO is the wave impedance

(= cop/k) at x = O.

B. Unacceptable Solution

There exists the other solution whose asymptotic rep-

resentation is

(5)

The Y.(x) is not an acceptable solution in the ideal wave-

guide because it grows up exponentially as x tends to
infinity. Equation (4) expresses a standing wave, as shown

in Fig. 2, and is decomposed into the incident wave O.(x) –

lFn(x) transmitting only the stored energy [4] with the
Poynting power C.2 toward the x direction and the reflected

-xc o xc x

Fig. 2. Interpretation of the field resonance in the ideal waveguide.

wave @n(x) + jY.(x) transmitting the same energy toward

the opposite direction. These two waves give rise to a

resonance in the transverse plane. When we regard this

resonant system as a network, and choose a driving point

of the network at x = O, the odd and even numbers of n

correspond to a resonance and antiresonance, respectively.

According to the network theory [5], it is concluded that the

field distribution is symmetric (antisymmetric) when an

antiresonance (a resonance) occurs.

@n(x) = even

}yn(X) = odd ‘
for n = 0,2,4, ”..

@n(X) = odd

1Y.(x) = even ‘
for n = 1,3,5,’””. (6)

This is true even if the outer layer exists. Therefore (6)

becomes important in the next section.

A set of @.(x) and Y.(x) will be needed when we calculate

the effect of the cladding. The function Y.(x) can uniquely

be determined as follows, recognizing the function ~~(x).

1) Give @n(x).

2) Calculate C. with @n(x). This is done by expanding (4)

into a power series of x

(7)

Thus, at x = O,

[

$’& @n(o)

4% Cos m ‘
for n = 0,2,4, ” “ .

()T
c“ =

<+k?z S;’(: ‘ ‘or n = 1’3’5’” “ ““ ‘8)

() 2

3) Seek the solution Yn(x) that satisfies the power con-

servation law (Poynting theorem)

@n(X)yn’(X) – @n’(X)yn(X) = 2kCn2Zo (9)

and the even–odd condition (6).
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MODES IN A PRACTICAL WAVEGUIDE

We now consider the inhomogeneous wave propagation

in the cladded inhomogeneous waveguide (Fig. 1). The

propagation constants for this waveguide will change the

form as

/+ = k~~ v = n + Av., (n = 0,1,2, ”s”)

‘ (lo)

where the symbol /3. or bv emphasizes the analytic con-

tinuation which is achieved by replacing n by v in the

functional form of 13mor bn. The analytically continued

functions ~,(x) and Y,(x) are, then,

Y,(X) = c, ~
4’2Z0 .

(J )
x k~bv – ~(t) dt – ~ .

~b, - X(X) “n o

(11)

The transverse mode function can be written, in the guiding

region, as a linear combination of ~,(x) and Y,(x)

Q,(x) cos 0, – Y,(x) sin 0,

(12)

This solution will still obey the “even-odd rule” for n, as

mentioned before; (12) is an even (or an odd) function of x

when n is even (or odd), and we see at once that – vn/2 +

0, = – nn/2, or

The continuous electric-field function of nth mode is now

written as

l@,(~)coscAv)-y,(~)sinEAv),

field function =

1

for [xl < XC

A, exp (– k~m, lx – X=l),

I for lx] > XC (14)

where

A, = @,(xc) Cos ();Avn – Y,(xC) sin
()
; Av. .

The ‘magnetic-field component Hz proportional to the

derivative of (14) with respect to x, must also be con-

tinuous at x = XC, Thus

()Kov COS : Avn
()

– KYV sin ~ Av. = O (15)

where K@v and KYV denote surface currents flowing toward

the direction perpendicular to the x axis, at x = XC;

when the internal electric field is forced to be @V(x)e-~~vz

(or Y,(x)e-jovz), the surface current K@v(or Kyv) is induced

in the presence of magnetic-field discontinuity. Equation

(15) means that the total surface current vanishes at x = XC.

Thus we have

‘Vn=(:)tan-’(2j
= (Yan-’K2fi:;&,:N’gj ‘1’)

v c Vvc

Noting that Av~ is usually small compared to n, we

approximate

‘Vn=(:)tan-’[@n’(Xc)+k~~(xC) – b. @fl(xC)

1

. (17)
Y;(XC) + k~x(x.) – b. ‘f’n(Xc)

At this stage, the present approximate method for

determining the propagation constants will be summarized.

1) Give the ideal waveguide solutions O.(x) and P. in

analytic form.

2) Obtain the associated solution Y.(x) from (6), (8), and

(9).

3) Substitute the specified function @“(x) and the as-

sociated function Y“(x) just obtained into the right-hand

side of (17), and calcuIate Av..

4) In ~n, replace n by v - n + Av., and compute /?,.

The four steps will be explained in detail when the

method is applied to some cases of index profile.

EXAMPLES

A. Parabolic-Index Profile (TE Wave Propagation)

~(x) = ~o(x) = (gx)z

where g is the medium constant.

The validity of the present theory is firmly ascertained

when the theory is applied to this case and when the’

results are compared to those obtained with a slight

modification of the rigorous analysis [2].

Step 1: In this case, ~.(x) and b“ are well known [6].

@“(x) = @no(x) = Hn(JZx/So)e-’2/2s02, s* = I/&

b. = b.. = (g/k)(2n + 1) (18)

where H“(x) is the Hermite polynomial of nth degree,

defined as

Hn(x) = ( – l)”e’’12(d”/&”)(e-= 2/2). (19)

Note that (19) may often be denoted by H,”(x).

Step 2: We first calculate C. with (8) using the formulas

H2~(0) = (– l)m(2nz – l)!!, Hj~+l(0) = (– l)m(2nz + l)!!,

where(2m– l)!! =(2m– l)(2m –3) ..” I and(– l)!! = 1.
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Second, to obtain the associated solution Y.(x), the Hermite

function }1.(x) [7] of the second kind defined below is

introduced

( (:e’z’’d’)’21)hn(x) = (– l~ex’/2(d”/dx”) e-x2/2

Equation (21) is another solution of Hermite’s differential

equation, which is chosen to be an odd or an even function

of x according to whether n is even or odd, and may be

obtained from the theory of parabolic cylinder functions

[8], [9]. The h.(x) satisfies the same recurrence formulas

with those for H.(x). 1 In addition, h.(x) is associated with

~n(X) by

Hahn’ – Hn’(x))zn(x) = n! ex’l’. (22)

It follows from (22) that the associated solution Y“(x)

satisfying (9 and (9) is given by

Jii
Yn(x) = Yno(x) = ~ — Cn2hn(Ji x/So) e-x2/2s02. (23)

9

Step 3; The functions ~.(x) and Y.(x) are substituted

into (17).

(25)

The values of – Av~ versus xC/SO are plotted in Fig. 3.

Then, to avoid numerical errors, }IH(N/~ ~) is computed using

the new function N.(t) defined in footnote 2.

Step 4: Calculation of the propagation constant is

straightforward.

flv = kdl – b, = k<l – (g/k)(2v + 1)

= kd 1 – (g/k)(2n + 1 + 2Avn). (26)

‘ h;(x) – XL’(X) + ?&(x) = o
h“’(x) = 7JZ”-l(X), (n 2 1)

h“+,(x) – X)z”(x) + nlzn_ ,(X) = o,

ho(x) =
J

x ~t212 dt

0

h,(x) = X
J

x ~r2i2 d~ _ &2e

o

2 IVn(<) - (~? ~)”+ le ‘~zhn(~~ E)/n !

N.(C) = (2{2/n)[N.-,(t) – N._,(?)],

N-l(t) = 1

~(t)wl+ (n+l)(n+ 2)+(n+l)(n+2)(n+ 3)(n+4)+
n 1 ! (z~)z 2! (2<)4

. . .

J

<
No(t) = 2~e-<2 er2 dt

0

= *gol 3 ~ ;–l)’. . . ~ ~ .(2, +1) (2t2)’+1

I0-2

I04
1234

Xclso

Fig. 3. A plot of – Avn versus X./SO for a parabolic-index profile.

The rigorous analysis [2] yields the same restdts with (24)

and (26), except that in [2], (25) is given by {~. There-

fore,3 the error in the present approximate analysis is about

11 percent when n = O and becomes less than 1 percent

when n is larger than 2.

When k. = 104 mm-l, no = 1.53, g = 3.23 mm–’,

and XC = 12.6 pm (XC = 2.8S0; SO = 4.5 pm), the four

modes will be able to propagate in the waveguide. Then

Avo & –0.4 X 10-4 Avl = –0,9 X 10-3

Avz m –0.9 X 10-2 AV3 N –0.8 X 10-1.

The values of the propagation constants increase due to the

effect of the cladding. Such increments are, respectively,

1,3 X 10-4 (n = O), 2.9 X 10-3 (n = 1), 2,9 X 10-2

(n = 2), and2.6 x 10-~ (n = 3) inmm-l.

B. Near-Parabolic-Index Profile (TE Wave Propagation)

~(x) = ~~(x) = (gX)’ + L%(gx)4

where a,g are constants.

Let XO(X) and Xl(x) be parabolic and near-parabolic

functions, respectively. For simplicity, the difference

between Xl(x) and XO(X) is assumed to be biquadratic.

Step 1; When g/k is small compared with unity, @X@

and b. are approximately expressed by [10]

@.(x) = @nI(X) = [dy(x)/dx] - ‘/2

“ E@ y(x)/~o]e-Y’(x) /2so’

b. = b., = (g/k)(2n + 1) + (g/k) 2a(3/4)(2n2 + 2n + 1)

– (g/k) 3a2[(17/64)(2n + 1)3

+ (67/64)(2n + 1)] (27)

3 Wo, Vl, q2, T3, “ “ “ , are, respectively, 1.4142, 1.2247, 1.2649,—
1.2472, 1.2571, 1.2508, . . ., which tend to 4n/2 = 1.2533 rapidly as
n increases.
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where the subscript 1 in @nI(x) and b.l indicates that the

index distribution is near parabolic [refer to the subscript O

in (18) indicating the parabolic state], and y(x) is a function

of x approximately proportional to x. The implicit ex-

pression for y(x) is approximately given by

J
; ib., - z,(~ dy = ~ ~b., - x,(.x) dx (28)

o

and the second-order solution of (28) is [10]

y(x) = X + (g/k)uSo[(3/16)(2n + l)(x/So) + (1/8)(x/So)3].

(29)

Step 2: To obtain C., @nI(0) = H.(0)/~y’(0) and

@~l’(0) = ~2y’(0) H~’(0)/So are substituted into (8). We

see that 4& is equal to ?fi o~y’(0) within an accuracy

of first order of g/k. Therefore, we obtain the same result

with (20).

The’ Y.(x) can be obtained in a similar manner with (23);

it is readily seen that

Y.(X) = Yni(x) ~ (1/qJ[d~(x)/dx] - lf2

“ ,4.[JZ y(x)/So]e- ‘2(x) /2s02 (30)

where q“ is the same as in (25).

Step 3: Substitute (27) and (30) into (1 7). Then we neglect

the second derivative y“(x), because y(x) is approximately

proportional to x. This is valid in the range g/k << 1. The

detailed derivation for Avn is given in the Appendix. The

result is

Avn E
()
~ tan-l
7r

[

. @.o’(Y.) + k~~o(yc)– ~no @nO(Yc)

1

(31)
Y@’(ye) + kixo(yc) – %0 Y.O(YC)

where

YC = X. + (g/k)~So[(3/16)(2n + l)(xc/&) + (1/8)(xc/SO)3].

(32)

It is worth noting that (31) is equivalent to the formula

(24) obtained for the parabolic-index profile only if XC is

replaced by yC. The Av~ can be calculated using (32) and (24).

Step 4: The propagation constant is computed as follows:

/3, = kdzv

b, = (g/k)(2v + 1) + (g/k) 2a(3/4)(2v2 + 2V + 1)

- (g/k)3a2[(17/64)(2v + 1)3 + (67/64)(2v + 1)]

v=n+Av~. (33)

To see the effect of the fourth aberration term in propaga-

tion characteristics, we use the same parameters with those

in the previous subsection. For IX = 100 and n = 3, y= is

13.2 ~m (2.94S.). Thus, AV3 E –0.36 x 10-1 and the

increment of the propagation constant due to the effect

of the cladding N 1.1 x 10–1 mm–l.

C. Near-Parabolic-Index Projile (TM Wave Propagation)

~(x) = xl(x) = (gx)z + a(gx)4

where a,g are constants.

This subsection includes a case of parabolic-index

profile.

Step 1: For TM waves, the ideal waveguide solutions are

given in [10]. The propagation constant is

~n = kil – b. – (g/k)’. (34)

The transverse mode-function (magnetic field) and b. are

given by

g -+ ~ E=dl + (6a + 4)(g/k)2

So + so = So/~l + (6CZ+ 4)(g/k)2 (35)

in (27).

Step 2: The derivation of Y.(x) developed here does not

depend on whether the field is of TE type or TM type.

Therefore, the result is the same with (30), if the replace-

ment (35) is taken into account.

Step 3: Kov and KWVin (15) must be replaced by surface

magnetic currents. However, the surface electric and mag-

netic currents are similar in form; the difference is neglig-

ible if g/k is small. The formula (17) is also applicabl~

this case when the first-order effect of the cladding is

be evaluated.

Step 4: The propagation constant can be computed

follows :

P, = k~l – b, – (g/k)2

b, = (~/k)(2v + 1) + (~/k)2ct(3/4)(2v2 + 2V + 1)

;0
to

as

- (~/k)3rx2[(17/64)(2v + 1)3 + (67/64)(2v + 1)]

v=n+Av~. (36)

Note that Av~ has been obtained in Step 3 replacing ~c in

(24) by yC/~o where

Y. E X. + (E/k)~~O[(3/16)(2n + l)(x./so) + (1/8)(xC/So)3].

(37)

The modification previously described has completed

the application of the present theory to the TM wave
propagation. A more accurate analysis may be developed

by applying the second-order theory of the TM wave

propagation [10] to this case.

CONCLUSION

An approximate theory has been developed for the

analysis of the wave propagation in cladded inhomogeneous

dielectric waveguides. It has been shown that the propaga-

tion constants can be obtained from the ideal waveguide

solutions, which are the analytic solutions in the absence
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of cladding. Some applications have been presented: For

a parabolic-index profile, the results of the rigorous analysis

have been shown by which the present

verified.

APPENDIX

Derivation of (31) is as follows:

@nl ‘(xc) + kJ~l(xc) – Z7”1mnl(xc)

theory has been

= [dJ@]’/’{@n(ye)c)- [y’’(xc)/2Y’2(~c)l@no(Yc)

+ (dy/cix)- lkJx,(xc)– ~nl @.o(Yc)}

—— [dy/dx]’/’{@n(yJyJ + kix,(yc) - bno @.o(Yc)

- [y’’(xc)/2y’2(xc)]mno(Y.)}

m [dy/dx]’/’{@n(ye)c) + kJ~o(yc) - b., mn,(yc)}.

Similarly, we obtain

Ynl ‘(xc) + kJxl(xc) – b,,, Yni(xc)

= [dy/dx]’/’{Yn(ye)c) + kd~o(yc) - bno ‘l’,,o(yc)}.

Substituting these results into (17), we obtain (31).
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Fringing-Field Effects in Edge-Guided
Wave Devices

PIETRO DE SANTIS, Ml?MBER, IEEE

Abstract—An equivalent model is presented for evaluating the fringing-
field effects in edge-guided waves (EGW) propagating along ferrite

microstrip circuits. It is based on the approximate model developed by
Getsinger for nonferromagnetic microstrip circuits. Fringing-field
effects are characterized by a fringing-field parameter b/b’ whose

numerical value is determined by experiment. Measurements are made

on EGW resonators of various shapes for different values of the applied

magnetic bias.

Finally, the fringing-field parameter is nsed to evaluate the ratio
between the reactive power stored in the fringing fields and the RF
power in the ferrite rurder the strip conductor in a disk resonator.

I. INTRODUCTION

F RINGING-FIELD effects in ferrite microstrips have

been studied by a number of authors [1]–[3]. Similar

to what has been done for microstrips on a nonmagnetic

Manuscript received August 11, 1975; revised December 29, 1975.
The author is with the Research Department, Selenia S.p.A., Via

Tiburtina Km. 12,400, 00131 Rome, Italy.

substrate, they are accounted for by introducing a “mag-
netic” filling factor, which reduces the numerical value of

the magnetic permeability of the substrate. Therefore, in

ferrite microstrip lines both the dielectric permittivity and

the magnetic permeability of the substrate’s material have

“effective” values. In general they are given in the form

&eff’ = 1 + qe(8r – 1)

,kff =
[1 ‘4;- 1)1-’

(1)

(2)

where q. and qm are the electric and magnetic filling factors,

e, and p, are the relative dielectric permittivity and magnetic

permeability of the substrate. The two quantities qc and qm

depend upon the geometry of the microstrip circuit and

are in general different from each other [4].

The expressions (1) and (2) are valid under the hypothesis

that the substrate is characterized by scalar constitutive


